The role of sterol rings and side chain on the structure and phase behaviour of sphingomyelin bilayers.

نویسندگان

  • Wen-Ying Gao
  • Peter J Quinn
  • Zhi-Wu Yu
چکیده

The role of the side chain of sterols and the sterol ring structure on the formation of ordered phases of the type observed in membrane rafts has been examined in aqueous dispersions of binary mixtures of sphingomyelin and androsterol. Comparisons have been made with binary systems of cholesterol, stigmasterol, beta-sitosterol, and ergosterol with either sphingomyelin or dipalmitoylphosphatidylcholine. Thermotropic phase behaviour and structure of the mixed aqueous dispersions were characterized by differential scanning calorimetry, synchrotron X-ray diffraction, freeze-fracture electron microscopy, and Fourier-transform infrared spectroscopy. We show that: (i) Androsterol is less efficient in promoting the formation of liquid-ordered phase than other naturally occurring sterols which possess a side chain, (ii) cholesterol is the most efficient sterol of those investigated in forming liquid-ordered phase, (iii) the molecular stoichiometry of egg sphingomyelin and androsterol in the liquid-ordered phase is about 2:1, and (iv) sphingomyelin can form more stable liquid-ordered phase than glycerophospholipid in binary systems containing androsterol.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Acyl chain length affects ceramide action on sterol/sphingomyelin-rich domains.

The effects of ceramides with varying saturated N-linked acyl chains (C2-C14) on cholesterol displacement from sphingomyelin-rich domains and on the stability of ordered domains were studied. The bilayers examined were made from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), D-erythro-N-palmitoyl-sphingomyelin (PSM), D-erythro-N-acyl-sphingosine, and cholesterol (60:15:15:10 mol%, res...

متن کامل

Interaction of 3β-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes.

3β-Amino-5-cholestene (aminocholesterol) is a synthetic sterol whose properties in bilayer membranes have been examined. In fluid palmitoyl sphingomyelin (PSM) bilayers, aminocholesterol and cholesterol were equally effective in increasing acyl chain order, based on changes in diphenylhexatriene (DPH) anisotropy. In fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, aminocholest...

متن کامل

Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy.

Cholesterol plays a crucial role in cell membranes, and has been implicated in the assembly and maintenance of sphingolipid-rich rafts. We have examined the cholesterol-dependence of model rafts (sphingomyelin-rich domains) in supported lipid monolayers and bilayers using atomic force microscopy. Sphingomyelin-rich domains were observed in lipid monolayers in the absence and presence of cholest...

متن کامل

Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order.

The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular membrane biology

دوره 25 6-7  شماره 

صفحات  -

تاریخ انتشار 2008